

INDEX	
 Ansaldobreda and the Environment The de-growth Example Case History Case Study Fire Safety 	
	2

The De-Growth Innovation– Examples – The Wood

2 FINMECCANICA

9

Wood is the best material for the sustainable architecture. In Italy, and especially in South Tyrol, various examples of wooden-framed houses can be seen.

Wood is a living material that breathes with us and enables us to reintroduce nature inside our homes. Wood balances the humidity level of indoor air and acts as a filter by releasing regenerated air.

AnsaldoBreda

1

The De-Grov	vth Innovation– Exar	nples – The Wood 🏻 🕀 FINMECCANIC	CA .
with other ma as the quanti machining, assembling ea Comparison b	between production of a of wooden with Cement,		
AnsaldoBreda			10

The De-Growth Innovation –	Examples – The Wood SFINMECCAN	CA
	Life of the product: a research of the Technische Universität in Braunschweig demonstrated that a wooden house, adopting suitable solutions, lasts 100 years at a minimum, like other houses built with heavier materials. A builder releases an averagely thirty-year warranty on a wooden prefabricated building, versus a ten-year warranty on a traditional concrete building.	
AnsaldoBreda		12

The De-Growth Innovation – Examples – The Wood

FINMECCANICA

AnsaldoBreda

Fire: spontaneous combustion starts at temperature а exceeding 300°; on the contrary steel, constituting the floor supporting reinforcing bars. expands at a temperature of 200°. In case of fire, the risk of a reinforced concrete-floored house falling down is higher than a wooden house.

13

14

The De-Growth Innovation – Examples – The Wood

AnsaldoBreda

The test carried out in 2008 in Japan at the Building Research Institute of Tsukuba gave evidence that a building with a wooden supporting structure can resist a big fire by assuring standards the of the inhabitants and the rescue team for all the time.

The De-Growth Innovation– Examples – Green Roofs 🔗

Originally, green roofs were conceived for a simple practical necessity. Ground and turf were laid on the birch peel lying on the roof: the peel had the function of a waterproof barrier, while ground had the purpose of hold the peel tight.

The realization of green coverings is a historically consolidated tradition in many Scandinavian and European countries.

AnsaldoBreda

Green roof art school - Singapore

15

The De-Growth Innovation – Examples – Green Roofs 🍣 FINMECCANICA

AnsaldoBreda

During the last 10 years, in Germany, 10% of the new roofs are green; in Japan, Tokyo municipality requests for any 600 sqm building to have a green covering of at least 20%.

Even in Italy, although late with respect to the other European countries, the interest towards the green roofs is more and more increasing; Bolzano is the leader, the first city to promote the use of ecocoverings.

At regional level, Emilia Romagna is the region with the majority of green roofs: Reggio Emilia, Rimini and Faenza.

17

The De-Growth Innovation– Examples – Green Roofs 🔗

Tokio's Imperial Hotel

Among the capitals of region: Milan's municipality council introduced the roof gardens topics in the updates of the Building Code, promoting their utilisation, wherever possible, on all the flat coverings.

In Turin it is mandatory to adopt green house fronts or roofs in case the building interventions imply volumetric variations for which it is impossible to destine 20% of the ground to green roofs; in the end, in Venice green roofs represent the requirements entitling to the reduction of the urbanisation charges.

<section-header></section-header>	 Food production: green roofs can be exploited for small agricultural productions. On the roof of the Fairmount Waterfront hotel in Toronto, flowers and vegetables are grown, allowing to save approximately 30,000 Canadian dollars per year on flowers and vegetables purchasing
Vancouver's Fairmont Waterfront Hotel	Social advantages: green roofs offer a good acoustic insulation and a green oasis.

The	De-Growth	n Innovatio	on– Railwa	y Examı	oles P _{finmeccanica}
	Be History E	Internal fitting '	rformance compari 'Metro Copenaghe		
Г	Internal fitting "Metro	o Copenaghen"	Internal fitting "Met	ro Brescia"	
F	Bauxite		Bauxite		Metro Brescia
	Air	Total	Air	Total	advantage:
	Fe	32	Fe	29	8%
Γ	Other]	Other		\sim
			<u>.</u>		
1.2 E	nergetic resources co	nsumption (MJ)			-
	Internal fitting "Met	ro Copenaghen"	Internal fitting "Me	etro Brescia"	Metro Brescia
	Oil		Oil		advantage :
	Hydro	Total 1.314	Hydro	Total 992	24%
	Gas	1.514	Gas	332	<u> </u>
	Other		Other		
~					
⇒; _{An}	saldoBreda				27

ase History					
	performance comp g "Metro Copenaç				
.5 Potential environmental impacts					
POTENTIAL ENVIRONMENTAL IMPACTS	Metro Copenaghen	Metro Brescia	Metro Copenaghen	Metro Brescia	Best solution advantage
GWP, "Global Warming Potential" (kg CO ₂ 100 eq)	5,611 · 10	2,947 · 10		۳	47%
ODP, "Ozone Depletion Potential" (CFC-11 eq)	1,6 · 10 ⁻⁵	4 · 10 ⁻⁷	<u>(%)</u>		97,5%
AP, "Acidification Potential" (kg SO ₂ eq)	5,412 · 10 ⁻¹	2,522 · 10 ⁻¹	<u> </u>	•	53%
EP, "Eutrophication Potential" (kg PO ₄₃ eq)	2,247 · 10 ⁻¹	5,53 · 10-5	<u>(%)</u>		100%
POCP, "Photochemical Ozone Creation Pot" (kg C ₂ H ₄ eq)	5,42 · 10 ⁻²	3,239 · 10 ⁻²			40%

The De-Gro	wth Inno	vation– Rail	way Exa	imples 🎅	CCANICA
Case Histor	ry				
		ental performance c			
1.6 Total mass and r	ecyclable percenta	ige			
		Total mass		recyclable mass %	
	Value (kg)	Advantage with respect to the worst solution	Value (kg)	Advantage with respect to the worst solution (recyclable Delta %)	
Metro Copenaghen	17,37	1	81,23	1	
Metro Brescia	10,81	38 %	98,35 🙂	17,11	
<i>y</i>					
AnsaldoBreda	a				

Th	e De-Grow	th Innovation-	- Railw	ay Examples		MECCANICA
Са	ise History					
		Internal fitting "M	letro Copen	nparison per passenge aghen" – "Metro Bresc		
2.:		m energy reduction "Bresc ces consumption (I)	ia" type interi	ors assessment 2.2.4 Waste pro	duction (kg)	
	Avoided impacts from the	energy consumption reduction		Avoided impacts from the ener	rgy consumption reduction	
	Unspecified	160.696		Waste returned to mine	12.872	
	Public supply	788	1	Slags and ash	6.307	
	Sea	201		Regulated chemicals	1.686	
	Other	313		Other	- 2.516	
L	Total	161.998		Total	18.349	
	with respect to total life cy interiors:	cle vehicle with "Copenaghen"		% with respect to total life cycle interiors:		
		1,41%		0,8	4%	
	nsaldo Breda					33

<u>r uncu</u>		bassenger table	comparison between ma construction	
Sizing results	Yield strength (σ_{sn})	Density [kg ⋅ m⁻³]	Minimum thickness (s) [mm]	Minimum mass [kg]
Aluminium alloys 5454 H34	[MPa] 	2,67 · 10 ³	3,68	0,79
Okoumè plywood	33	0,52 · 10 ³	9,83	0,41
Composite material	196	2,58 · 10 ³	4,03	0,83

se Stu		nal and e	<u>nvironmental</u> for small p			comparison I construction		materials	5
	1.:	2.3 Water	resources consu	imption (l): enviro	nmental indica	tor n°3	_	
Alumin	ium alloy 5454	4 H34	Okoumè plyw	bod	Poly	ester resin with glas	ss fibre	Advan	tage over the
Public su	ipply		Public supply		Pu	blic supply		worst	solution :
Unspeci	fied	Total 31.519	Unspecified	Unspecified Total Sea Other	Unspecified Sea Other		Total 40,31	Plywood 100% Aluminium 22%	
Sea		51,519	Sea						
Othe	r		Other					1	\wedge
	<u>e</u>				2				
Aluminin Waste return Mineral			.4 Waste produc Okourr Waste returned Wood was	to mine	tenviron		esin with glas ash	s fibre Total	Advantage over the worst solution:
Slags a		4,893	Regulated cher		0,01798	Unregulated che		0,166 Plywood 100% Composite 97%	
Siags a			-		1	Other			
Uli			Other		Other				

The De-Growth Innovation– Railway Examples SFINMECCANIC							
Case Study							
Functional and environmental perfor for small passen 1.2.5 Potential environmental impacts: environmental indicator	ger table construct		<u>rials</u>				
POTENTIAL ENVIRONMENTAL IMPACTS CALCULATION	Aluminium alloy 5454 H34	Okoumè plywood	Polyester resin with glass fibre				
GWP, "Global Warming Potential" (kg CO ₂ 100 eq)	0,3501	-0,362	1,77	1			
ODP, "Ozone Depletion Potential" (CFC-11 eq)	4 · 10 ^{.9}	1 · 10 ⁻¹¹	2 · 10 ⁻⁷	1			
AP, "Acidification Potential" (kg SO ₂ eq)	2,934 · 10 ⁻²	0,00301	0,006	1			
EP, "Eutrophication Potential" (kg PO ₄₃ eq)	1 · 10 ⁻⁶	6 · 10-8	3 · 10 ⁻⁵	1			
POCP, "Photochemical Ozone Creation Pot" (kg C_2H_4 eq)	0,003577	4 · 10 ⁻⁴	8 · 10 ⁻⁴				

Case Study				
<u>Functional and environmental perfo</u> for small passe			etween materia	ls
1.2.5 Potential environmental impacts: environmental ind	icators n°5-9			
POTENTIAL ENVIRONMENTAL IMPACTS COMPARISON	Aluminium alloy 5454 H34	Okoumè plywood	Polyester resin with glass fibre	Advantage with respect to the worst solution
GWP, "Global Warming Potential" (kg CO ₂ 100 eq)			<u> </u>	Plywood 120 % Aluminium 80 %
ODP, "Ozone Depletion Potential" (CFC-11 eq)	<u> </u>		8	Plywood 100% Aluminium 98%
AP, "Acidification Potential" (kg SO ₂ eq)			<u> </u>	Plywood 90% Composite 80%
EP, "Eutrophication Potential" (kg PO ₄₃ eq)	<u> </u>	ē	8	Plywood 99,8% Aluminium 97%
				Plywood 89% Composite 78%
POCP, "Photochemical Ozone Creation Pot" (kg C_2H_4 eq)				

The De-Growth Innovation– Railway Examples								
Case Study								
<u>Functional and envi</u> .2.6 Total mass and recyclable percentage a	for small pas	senger table constr	<u>uction</u>	<u>materials</u>				
MASS AND	r	Fotal mass	Recyclable mass					
RECYCLABLE PERCENTAGE	Value (kg)	Advantage with respect to the worst solution	Value (kg)	Advantage with respect to the worst solution (recyclable Delta %)	1			
Aluminium alloy 5454 H34	0,79	5 %	0,79	99 %	1			
Okoumè plywood	0,41 🙂	51 %	0,328	79 %				
Polyester resin with glass fibre	0,83	I	0,00259	1	1			

Enctional and environmental performances comparison between m Functional and environmental performances comparison between m for small passenger table construction 1.2.7 Results analysis and best material selection Environmental indicators comparison BEST MATERIAL SELECTION Environmental indicators comparison Aluminium alloy 5454 H34			<u>s</u>					
for small passenger table construction 1.2.7 Results analysis and best material selection ENVIRONMENTAL INDICATORS COMPARISO BEST MATERIAL SELECTION 1 2 3 4 5 6 7 8 9			<u>s</u>					
BEST MATERIAL SELECTION 1 2 3 4 5 6 7 8 9	אר	01			_			
	ENVIRONMENTAL INDICATORS COMPARISON							
Aluminium alloy 5454 H34 / / / 22 / 80 98 / 97 /	10	9 10	11	Total				
	5	/ 5	99	401				
Okoumè plywood 100 92 100 99,6 120 100 99,8 88	9 51	19 51	79	1020,4	>			
Polyester resin with glass fibre 75 62 / 97 / / 80 / 74	в /	18 /	1	392				

